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Abstract: It is known that certain CatmulbRom splines [7] inter- 
polate their control vertices and share many properties such as affine 
invariance, global smoothness, and local control with B-spline curves; 
they are therefore of possible interest to computer aided design. It 
is shown here that another property a class of Catmull-Rom splines 
shares  with B-spline curves is tha t  both  schemes possess a simple 
recursive evaluat ion algori thm. The  C a t m u l b R o m  evaluat ion algo- 
r i t hm is constructed by combining the  de Boor a lgori thm for evaluat-  
ing B-spline curves with Neville's a lgor i thm for evaluat ing Lagrange 
polynomials .  The  recursive evaluat ion a lgor i thm for Ca tmu l l -Rom 
curves allows rapid evaluat ion of these curves by pipellning with spe- 
cially designed hardware.  Fur thermore it facilitates the development  
of new, related curve schemes which may  have useful shape pa ram-  
eters for altering the  shape of the curve wi thout  moving the control 
vertices. It m a y  also be used for construct ing t ransformat ions  to 
B~sier and B-spline form. 
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1 I n t r o d u c t i o n  
In computer  aided design designers often use B-spline curves: 

S(t) = ~ iVt(t)~ (i) 

where the  Vi are points  called con(rol vertices and the N~(t) are de- 
gree n (order n + 1} piecewise polynomial  blending funct ions called 
B-splines or B-spline basis functions. These blending functions de- 
pend on a set of knots {tl}. By altering the control vertices, and 
perhaps the knots, the designer is able to manipulate the shape of 
t,he c u r v e  I13]. 

B-spline curves are useful for m a n y  reasons, among  them 
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- -  piecewise polynomials:  B-spline curves are piecewise polyno- 
mial.  They  are therefore easy to store and  manipula te ,  while often 
being faster  to compute  and analyze than  single polynomials  because 
usual ly  one can use lower degree piecewise polynomials.  

- -  differentiability: B-spline curves have a high degree of smooth-  
ness. Usually the  curve will be n - 1  t imes cont inuously differentiable, 
a l though by int roducing mult iple  knots  it can be designed to be less 
smooth .  

- -  local control: altering a single control vertex affects only a lim- 
ited port ion of the  curve ra ther  than  the entire curve. This  is because 
the  blending funct ion N~(t) is 0 outside of the  interval Its, t~+~+l}. 

- -  a ~ n e  invaxiance: the  B-spline basis funct ions are normal ised  
to sum to 1. This  implies tha t  B-spline curves are invariant  under  
afflne t ransformat ions .  Thus  these curves depend only on the  relative 
geometry  of their control vertices, and not on any absolute coordinate 
system.  

- -  recursive evaluat ion algori thm: There is a simple, numerical ly 
stable, recursive evaluat ion algori thm for B-spline curves called the  
de Boor a lgor i thm [4], which computes  points  along S(t} wi thout  
explicitly evaluat ing N~(t ) .  

While  B-spline curves do have many  desirable properties, there 
are some desirable features they lack. For example,  B-spline curves 
are approximat ing  curves; t ha t  is, they  approximate  the  shape and 
posit ion of the control polygon (the polygon obtained by connect- 
ing the  control vertices in order wi th  line segments) ,  ba t  in general 
they do not  interpolate the  control vertices. For some applicat ions 
in compute r  aided geometric design it is desirable for the  control 
vertices to actually lie on the  curve. Many known curve schemes in- 
terpolate their control vertices, however these curve schemes usual ly  
have other  drawbacks.  Natura l  cubic spllnes (see, e.g., [5] or [6]), for 
example,  do not  have local control or a known recursive evaluat ion 
algori thm. 

Certa in  curve schemes have been developed which retain m a n y  
B-spline carve properties while incorporat ing addit ional  features. 
Ca tmu l l -Rom splines are one such scheme. Ca tmul l  and Rom noted 
tha t ,  in any curve scheme, one can replace control vertices wi th  func- 
tions, and thus  get a more general scheme [7]. Various choices of 
these funct ions impar t  different desirable properties to the  curve. In 
part icular ,  they  observed tha t  certain choices led to interpolatory 
curves. Al though  Catmul l  and  Rom discussed a more general case, 
we will restrict  our a t tent ion to an impor tan t  class of Ca tmu l l -Rom 
splines obtained by combining B-spline basis funct ions and Lagrange 
interpolat ing polynomials.  These Ca tmul l -Rom splines, which we 
shall  define more precisely below, have m a n y  nice features. They  are 
plecewise polynomial ,  have local support ,  are invariant  under  affine 
t ransformat ions ,  and have certain differentiability and interpolatory 
properties. The  purpose of this paper  is to show tha t  they also have 
a recursive evaluat ion algori thm similar  to the  de Boor a lgor i thm for 
B-splines. 

This  new resul t  is interest ing for m a n y  reasons.  First ,  by em- 
ploying this a lgori thm and specially designed hardware one can eval- 
ua te  and render such curves very rapidly [10]. Second, the  fact t ha t  
C a t m u l b R o m  splines possess such an evaluat ion a lgor i thm places 
t hem in a class of curves called =piecewise recursive curve schemes ~ 
[2]. These schemes generate new curves which may  not  only retain 
certain properties of Ca tmu l l -Rom splines but  also possess shape  
parameters ,  scalars which affect the  shape of a curve wi thout  mov-  
ing the  control vertices. Third,  general results for recursive curve 
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schemes provide ways of t ransforming Ca tmul l -Rom splines to Bdzier 
or B-spline form. Finally, the fact tha t  Ca tmul l -Rom splines have 
a rectursive evaluat ion algori thm of this  sort makes them notewor- 
thy  because very few welLknown piecewise polynomial  schemes have 
such an evaluat ion algori thm. 

This  paper  is s t ructured as follows: in Section 2 we will give 
more details  concerning Ca tmul l -Rom splines and then introduce the  
recursive evaluat ion a lgor i thm and make  some observations about  it. 
In Section 3 we give some concrete examples  by looking at a few cubic 
Ca tmu l l -Rom splines. Section 4 contains concluding remarks.  

2 C n t m u l l - R o m  s p l i n e a  a n d  t h e i r  r e c ~ a i v e  e v a l u a t i o n  a l -  
g o r i t h m  

This  section is divided into three parts .  In Subsection 2.1 we 
define the  class of Ca tmul l -Rom splines with which we are concerned 
and discuss the  properties of the  splines in this class. In Subsection 
2.2 we introduce the  recursive evaluation a lgor i thm for this  class of 
curves. Subsection 2.3 contains a discussion of some aspects  of the  
algori thm. 

2.1 Ca tmnl l -Rom splines 
Ca tmul l  and Rom noted tha t  if one began with a curve scheme 

D ( t )  = ~ F, ( t )V,  (2) 

one could replace the control vertices V/by functions V~ (~) which may 
depend on new control vertices. The resulting curve scheme will be 
more general than the original schem% since V~(t) can be thought 
of as a generalization of V/. This generality can be exploited to 
endow the new curve with special properties; in particular Catmull 
and Rom observed that special choices of Vi(t) will result in .D(t} 
interpolating certain points. 

We will now center our attention on an important subclass of 
this class of curves. We will employ a notation more suitable for our 
needs than that used in [7]. 

Suppose one wishes to generalize B-spline curves. Let the blend- 
ing functions F/(t) in (2) be the B-spline basis functions N~(t) with 
knot set {ti}. One can choose the V/(t) to be the Lagrange interpo- 
lating polynomials of degree m which interpolate the control vertices 
Pi-m, ..., P~ at any distinct nodes Sl--m,..., st, respectively. Unlike 
the knots, we do not require the nodes to be increasing. Although 
Catmull and Rom equated the nodes s] with the knots ti, we will 
allow the nodes to be arbitrary, as long as they are distinct. Anal- 
ogous to the interpolation result in [7], if *j E [ty+n, ti+~+t ), then 
D{s#} -- Pi {the spline is interpolatory). Note this requires rn > n. 
(If tj+~+1 is not a knot of multiplicity n + 1, then D(s#) = Pi if 
tj E [ty+n,ti+m+l]. ) Regardless of whether or not the spline is in- 
terpolatory, it will always be a degree n + m piecewise polynomial, 

- 1 times continuously differentlable, affine invariant, and have 
local control. All these properties are inherited from properties of 
the B-spllne basis functions N~(t) and the Lagrange interpolating 
polynomials  V/{t). 

The  Ca tmul l -Rom splines in this class can be wri t ten either as 

D(t)  = ~ N~(t)V~(t)  (3) 
i 

or, collecting coefficients of P~, as 

D ( t )  = ~ C,~(t)~ (4) 

for some functions olct}. The G~(t) are called the Catmull-Rom 
blending functions and are sums of products of certain B-spline and 
Lagrange basis functions. More specifically if we let L~ (t) denote 
the Lagrange cardinal function which has nodes sy_,~,..., sj and 
which is 1 at  sl, j -- rn < i < j ,  then  

i 
v~Ct)= ~ L ~ , . { t ) P .  (5) 

and it is t hen  not  difficult to see tha t  

i + m  

G,:(t) = ~ N$Ct )L .~ jC t ) .  (6) 

When s i E [ t i + . , t i + m + l  } for all j ,  then these blending functions 
satisfy the cardinal  condit ions Gi (si) = 5~y since if j # i then either 
LT.~(s#) = 0 or N~(s;) = 0 while if ~ = ~ then LT, As;) = ~ for 

t# = i  . . . . .  i + r n  and E~+__~ N~(s j )  = 1. 
For Catmull-Rom splines we have a set of knots {t~} and a set of 

nodes {sy}. To simplify the  number  of parameters ,  we can express 
the  s ' s  in t e rms  of the Ps. For example,  we can equate the  nodes 
with the  knots.  If for all j we set %. = ty+k for any integer k such 
tha t  n < k < m (n < k < m +  1 ff all the  knots  have mult ipl ici ty 1), 
we will not  destroy any interpolat ion present. Another  possibility is 
to equate the  Lagrange nodes to the B-spline nodes (cf. [5, p.214]). 

If the  B-spline has  mult iple  knots,  equat ing knots  and nodes will 
create a s ingulari ty in the  Lagrange curve. The usua l  m e th o d  of 
overcoming this  difficulty is to use a scheme which also interpolates  
certain derivative values; however, such a scheme will not  have a 
recursive evaluat ion a lgor i thm of the type developed below. Thus ,  
when  the B-spline has  mult iple  knots,  one cannot  total ly equate the 
Lagrange nodes to the B-spline knots. One can do so partially as 
long as no assignments are made resulting in singularities. 

Some examples of Catmull-Rom splines and their blending func- 
tions will be shown in Section 3. 

2.2 The  recursive evaluat ion a lgor i thm 
We now introduce a recursive evaluat ion a lgor i thm for this  class 

of C a t m u l l - R o m  curves. To do this, we call to mind  two other  recur- 
sire evaluat ion a lgor i thms - -  the  above ment ioned de Boor a lgor i thm 

[4] for B-spline curves, and Neville's a lgor i thm (cf. [6]) for Lagrange  
polynomials .  

To evaluate  a B-spline curve S(t)  for t C [t,, t q + l )  , s e t  

P ~ ( t )  = v ,  i = q - , ~  . . . . .  q 

P [ { t )  --  t . + z + i - r  - t p r _ Z f t ~  t - ti - - - -  , _ , , ,  + P:-l(t) 
t t t + l + i - - r  - -  t i  t n + l + i - - r  - -  t i  

r = 1 , . . . , r t ;  i = q - - r t + r , . . . , q .  (7) 

Then  S( t )  = P~(t ) .  The de Boor a lgor i thm can be represented in 
a t r iangular  array as shown in Figure 1. An example  using this  
a lgor i thm to evaluate  a B-spllne curve is given in Section 3. 

pq3(t) 

tq÷l-t / X t - t  q 
t q + l - /  X l - t q  

Pq2_l(t) P~(t) 

tq+ 1 -- t q - l /  tq+ l -- tq_ 1 tq+ 2 -- tq X + 2  -- tq 

/ \ /  
Pql_2(t) Pql_l(t) pql (t) 

tq+l-- t t -- tq-2 tq+ -- t -- tq-1 +3--t t -- tq 
tq+l -- tq-2 tq+l -- tq-2 tq.2 -- tq_ 1 3 tq 3 tq 

/ \ /  

Vq_3 Vq_2 Vq_ I Vq 

l ¢ ign re  1: A d i a g r a m  o f  t h e  de  B o o r  a l g o r i t h m  fo r  e v a l u -  
a t i n g  a B - s p l i n e  c u r v e  S( t ) .  T h e  c u b i c  c a s e  (n  = 3) is s h o w n  
w h e r e  t E [tq, tq+l I. T h e  c o n t r o l  v e r t i c e s  V~ a r e  p l a c e d  a t  t h e  
b o t t o m  o f  t h e  t r i a n g l e  a n d  b l e n d e d  t o g e t h e r  u n t i l  t h e  p o i n t  
P~(t) = S(~) is obtained. 

Neville's algorithm is a recnrsive algorithm for evaluating the 
Lagrange polynomial L(t) which interpolates points P0,.-.,P~ at 
nodes so,..., s~. It can be written as 

P ? ( O =  e ,  i = O  . . . . .  m 

P{{t)  = sl - t p;__zz(t ) + t -  s ,_ ,  p~_Z(t)  
Si  - -  S i - - r  Si - -  S l - - r  

r =  1 , . . . , r n ;  i = r , . . . , r n .  (8 )  

Then  L(t)  = P 2 ( t ) .  Figure 2 shows a d iagram of Neville's algo- 
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rithm as a triangular array. An example using Neville's algorithm 
to evaluate a Lagrange polynomial is given in Section 3. 

t 2 - t  / 

PI(t) 

P33(t) 

t3~.~ / ~ t--tO 
t3 ~ - t o  

~ - t t o  t ,  S t ,  ~ 3"V"7"t, 
\ /  \ 

(0 P~(t) P3 

t z- __t~ t~-t t~t~ 
X / t2- t l  t2--tl~ /t3--t 2 ~ t2 

P, P~ P, 

t~ t - t  o 
tl ~ - to 

Pc 

Figure  2: A d iagram of Neville 's  a lgor i thm for evaluat-  
ing a Lagrange polynomia l  L(t). The cubic ease (m = 3) is 
shown.  The control  poin ts  P~ are placed at  the b o t t o m  of the  
t r iangle  and  b lended  together  un t i l  the  point  P~(t )  ~ L( t )  is 
ob ta ined .  

To evaluate a Catmull-Rom spline we could naively first use 
Neville's algorithm to calculate the functions I,~(Q and then apply 
the de Boor algorithm to obtain a point on the curve D(t). See 
Figure 3 for a diagram of this procedure. Note that although Fig- 
ure 8 does present a recursive evaluation algorithm for Catmull-Rom 
curves, this Mgorithm is neither as efficient nor as elegant as, e.g., the 
de Boor algorithm for B-spline curves since the de Boor algorithm 
can be represented in a more compact triangular form (Figure I). 

What is remaxkable about Catmull-Rom splines is that this naive 
recursive evaluation algorithm can be simplified extensively because 
there is substantial overlap in evaluating succesive V/(t)'s. Let P~(t) 
be the point P~(t) computed in evaluating V~(t) by Neville's algo- 
rithm. Then, since I.~(t) and V~+l(t) share the nodes st-m+,,..., s~ 
and the control vertices Pi_,~+,, ..., Pi, the parameters used in cal- 
culating P~+,,i(t} are identical to the corresponding parameters used 
in computing e~i+i (t) when 2" < m. Therefore P;+,,, (t) = P~,+i (t) 
for 2' < m. In particular the points P~_1,1+1(t) are found in eval- 
uating ~{t) and therefore do not need to be recomputed in evalu- 
ating l'~+l(t). If we store these points, then (see Figure 2} we need 
only compute the m new values P~,i+t(t) r = 1,..., m to evaluate 
v~+~(O. 

This redundancy leads to a simpler and less costly evaluation al- 
gorithm for Catmull-Rom splines. This algorithm can be represented 
by a triangular diagram, an example of which is shown in Figure 4, 
similar to the diagrams in Figures 1 and 2. 

We now write down explicitly the recursive evaluation algorithm 
for Catmull-Rom splines. To evaluate the Catmull-Rom curve D(Q 
for t E [tq,tq+l) J set 

Pp(t) = P, ~=q-.-m ..... q 

~'(t) - s~ - t e:.::(t) + : - s,_. P:-qO 
8i -- Si--r 8i -- $i--r 

r = 1 , . . . ,m;  i = q - - n - - r n + r , . . . , q .  

t.+~+,_,z~p:z:(O + t -  t ,  e:(t) 

r = m + l ~ . . . , m + n ;  i = q - - n - - m + r , . . . , q .  {9) 

Then D(t) = W+"(t}- 
To verify that P~n+n(t) does indeed equal D(t), merely note 

that the first stage of the algorithm produces the Lagrange curves 
P~(t) = P~[t) i = q --n ..... q and the second stage applies the de 
Boor algorithm to these curves. 

D(t) 

/ \  
/ \ / \  

Vq_ 2 (t) Vq_ 1 (t) Vq (t) 

, / \  / \ . / \  
/ N / X / X / X / N / " ,  

Pq--4 Pq-3 Pq-2 Pq-3 Pq-2 Pq-, Pq-2 Pq-I Pq 

Figure 3: One possible means of evaluating Catmull-ltom 
splines is to evaluate each of the Vi (t) separately by Neville's 
algorithm, and then blend these curves together by the de 
Boor algorithm to get D(t). Such a technique can be repre- 
sented as shown (for the case n = m = 2). 

D(t) 

/\ 
/ \ / \  

Vq_2(t ) Vq_ I (t) Vq (t) 

/ \ / \ / \  
/ \ / \ / \ / \  

Pq--4 Pq-3 Pq-2 Pq-I Pq 

Figure  4: A d iagram of the recursive eva lua t ion  algo- 
r i t h m  for Ca tmul l -Rom curves. The case shown is ~ = m = 
2. The lower levels in Figure  3 can be combined  to yield 
the  a lgor i thm shown here. This  a lgor i thm is theoret ical ly  
less compl ica ted  and  computa t iona l ly  less expensive t h a n  
the  one in  Figure  $. 

2.3 A discussion of the algorithm 
In this subsection we will discuss a few important aspects of the 

recursive evaluation algorithm for Catmull-Rom splines. 
As with B-splines, it is possible to use the standard tensor prod- 

uct construction to obtain rectangular tensor product CatmuII-Rom 
surfaces. Such surfaces will possess geometric properties similar to 
those possessed by Catmull-Rom curves, and will also possess an 
analogous recursive evaluation algorithm. Whether one can con- 
struct similar surfaces for triangular domains is still an open ques- 
tion. 

We mentioned above that one of the reasons the recursive evalua- 
tion algorithm for Catmull-Rom curves is important is that it allows 
fast evaluation of the curve. If one used a processor to compute each 
new point P~(t) and ran the processors in parallel, one could cal- 
culate points on the curve extremely rapidly [10]. A slightly more 
complicated multlprocessor architecture would allow rapid evalua- 
tion of Catmull-Rom tensor product surfaces. Such architectures 
would permit real-time interactive design using Catmull-Rom tensor 
product surfaces and/or large numbers of Catmull-Rom splines. 

Shape parameters axe scalars which affect the shape of the curve 
without moving the control vertices (cf. [3]). They are useful for in- 
troducing features such as tension into a curve. By altering a single 
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shape parameter one can often obtain a curve which would other- 
wise have required simultaneously changing the positions of many 
control vertices. CatmuU-Rom splines do not have shape parame- 
ters as such, although it may be possible to develop useful shape 
parameters based on the knots and/or the nodes. (Another possibil- 
ity -- visually continuous Catmull=Rom splines -- has been studied 
in [9].) We can, however, use the recursive evaluation algorithm to 
construct curve schemes which have shape parameters and which axe 
related to Catmull-Rom splines. One can modify the recursive evalu- 
ation algorithm so that for some choices of r, i and shape parameters 
a r , i  ~ br , i  ~ 

a,,, - t , -  i at=bE,,, _ v:(O - a : : ~  P~_, (0 P;-'(t) (10) 
r , i  

while the remainder of the algorithm stays the same. The resulting 
curves will still have a recursive evaluation algorithm, be piecewise 
polynomial, have local support,  and be afllne invaxiant. Depending 
on how the shape parameters axe introduced, the curves may retain 
differentiability and interpolatory properties. Again, the effects of 
such shape parameters need further study. 

Another reason that  a recursive evaluation algorithm is impor- 
tant is that  it can be applied to develop transformation formulas. 
By using the recursive evaluation algorithm and techniques such as 
degree raising and duality [1] or a method called "blossoming" [12], 
it is possible to transform Catmuil-Rom curves to B-spline or B~zier 
form. Further research is needed to investigate the efficiency of these 
transformation techniques and to determine whether these methods 
can be generalized to yield other transformations algorithms. 

As with B-spiines (cf. [12]), the triangular arrays representing the 
recursive evaluation algorithm for contiguous segments of a Catmull- 
Rom spline mesh together. H we overlay the triangular arrays for 
two adjacent segments of the spllne so that  the shared control points 
lie directly on top of one another, then the functions on overlapping 
edges of the diagram will be identical [2]. This makes Catmull-Rom 
splines especially noteworthy since very few piecewise polynomial 
schemes have a simple evaluation algorithm, let alone one of this 
special form. 

There axe certain properties possessed by the de Boor algorithm 
which axe not possessed by the Catmull-Rom evaluation algorithm. 
Since the de Boor algorithm calculates new points by taking convex 
combinations of old points, it is numerically stable. However, any 
reasonably smooth interpolatory curve will not lie in the convex hull 
of its control vertices; therefore the evaluation algorithm for Catmull- 
Rom splines may be unstable. In particulax instability can occur 
when there is a large variation in the spacing between the knots or 
the nodes. This instability is a consequence of a similar problem in 
Neville's algorithm. 

Another difference is that there is a closer connection between the 
de Boor algorithm and the B-spline basis functions than between the 
evaluation algorithm for Catmull-Rom splines and the Catmull-Rom 
basis functions. 

For example, one can derive the Cox-Mansfield-de Boor recur- 
rence relationship [4,8] for the B-spline basis functions from the de 
Boor algorithm. Similarly one can derive a recursion formula for the 
CatmuU-Rom blending functions from the recursive evaluation algo- 
r i thm for Catmull-Rom curves. However, in the recursion formula 
for B-splines, B-splines are computed directly from lower degree ]3- 
splines, while the Catmull-Rom blendlng functions are not computed 
directly from lower degree Catmun-Rom blending functions. Again 
this happens because Neville's algorithm does not compute the La- 
grange basis functions from a Lagrange basis of lower degree. 

3 E x a m p l e s  
In this section we will examine a few cubic Catmull-Rom splines 

and their recursive evaluation algorithms. We take the B-spline knots 
to be uniformly spaced with tl = £, define the Lagrange nodes by 
sy = ~y+~, and consider the evaluation algorithm for the interval 
[0,1]. For each example we will provide a set of four graphs: a 
diagram of the recursive evaluation algorithm, a spline curve, an 
example using the recurslve evaluation algorithm to evaluate a point 
on the curve, and a graph of one of the blending functions. In the 
graphs showing evaluation, the only point P~'(t) which lies on the 
curve is F~(t). That some of the other points appear to lie on the 
curve is merely coincidental. Also, since the knot spacing in the 
examples is uniform, all other blending functions are translates of 
the one shown in the blending function graphs. 

For cubics we have four possibilities for n and r~. If we choose 
n = 3, rn = 0 we will obtain the usual cubic B-spline which is twice 

continuously differentiable. The graphs for this case are shown in 
Figure 5. The case n = 2, rn = 1produces  a spline which is C 1. 
Figure 6 shows the illustrations for this case. 

The case n = 1, m = 2 illustrates some elegant properties of 
Catmull-Rom splines. The figures for this case axe presented in Fig- 
ure 7. The resulting spline is guaranteed to be C ° and interpolating. 
It is, however, actually C 1. Indeed, for any Catmull-Rom spline if 
for all 3" we let sy = t¢+~ for any integer k such that  n < k ~ m, 
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F i g u r e  5: V a r i o u s  f igu res  fo r  cub ic  C a t m u l l - R o m  s p l i n e s  
w i t h  n = 3, m = 0, ti = i .  Since  m = 0 t h i s  is a C s B-  
sp l ine  cu r ve .  F i g u r e  5a s h o w s  a d i a g r a m  of  t h e  e v a l u a t i o n  
a l g o r i t h m  fo r  t E [0, 1], F i g u r e  5b s h o w s  a n  e x a m p l e  o f  s u c h  
a sp l ine  a l o n g  w i t h  i t s  c o n t r o l  p o l y g o n ,  F i g u r e  5c s h o w s  
e v a l u a t i o n  o f  t h e  sp l lne  a t  t = .4, a n d  F i g u r e  ~d s h o w s  a 
b l e n d i n g  f u n c t i o n  G~(t) .  
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F i g u r e  6: "Various f igures  fo r  cubic  C a t m u l l - R o m  sp l ines  
w i t h  n = 2, m = I, ti = i , ~  = i +  1. T h e  sp l ine  c o n s i s t s  
o f  q u a d r a t i c  B - s p l i n e s  b l e n d e d  w i t h  l inea r  L a g r a n g e  c u r ves .  
F i g u r e  6a s h o w s  a d i a g r a m  of  t h e  e v a l u a t i o n  a l g o r i t h m  for  
t E [0, 11, F i g u r e  6 b  s h o w s  a n  e x a m p l e  o f  s u c h  a sp l ine  a long  
w i t h  i t s  e o n t r o l  p o l y g o n ,  F i g u r e  6e s h o w s  e v a l u a t i o n  o f  t h e  
sp l ine  a t  t = .4~ a n d  F i g u r e  6 d  s h o w s  a b l e n d i n g  f u n c t i o n  
G i ( t ) .  N o t e  t h a t  t h i s  sp l ine  is C 1. 

then the curve is C n t2l. Note too from Figure 7 that the case 
n = 1, m = 2, ~j ~- ty+2 is identical to the case n = 2 ,  r n  ~ 1 with 
sy = t y÷z .  In generalj if r t + m  = 2d+ 1 for any nonnegative integer d, 
then by comparing recursive evaluation algorithms it can be shown 
that the cases n = na + 1, sy = ty+m+l and n = m - 1, sy = t i+m 
are identical. Finally, the particular case here is also an Overhauser 
spline [11]. 

The final cascj shown in Figure 8, is n = 0, m = 3, which pro- 
duces a continuous interpolatory spline. 
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F i g u r e  T: "Various f igures  fo r  cubic  C a t m u l l - R o m  sp l i n e s  
w i t h  n = 1, m = 2, t~ = i, s~ = i + 2 .  T h i s  sp i ine  c o n s i s t s  o f  lin- 
ea r  B - s p l l n e s  "blended w i t h  q u a d r a t i c  L a g r a n g e  p o l y n o m i a l s .  
F i g u r e  Ta s h o w s  a d i a g r a m  of  t h e  e v a l u a t i o n  a l g o r i t h m  for  
t E [0, 1], F i g u r e  7b  s h o w s  a n  e x a m p l e  o f  s u c h  a sp l ine  a long  
w i t h  i t s  c o n t r o l  p o l y g o n ,  F i g u r e  Tc s h o w s  e v a ] u a t l o n  o f  t he  
sp l ine  a t  t = .4, a n d  F i g u r e  7d s h o w s  a b l e n d i n g  f u n c t i o n  
Gi(t). T h i s  sp l ine  is C 1 a n d  i n t e r p o l a t o r y .  
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F i g u r e  8: V a r i o u s  f i gu re s  fo r  c u b i c  C a t m u l l - R o m  s p l i n e s  
w i t h  n = 0, m---- 3, t~ = i,s~ = i +  3. S i n c e  n = 0 e a c h  s e g m e n t  
o f  t h i s  c u r v e  is a cub ic  L a g r a n g e  p o l y n o m i a l .  F i g u r e  8a 
s h o w s  a d i a g r a m  o f  t h e  e v a l u a t i o n  a l g o r i t h m  for  t E [0, 1], 
F i g u r e  8 b  s h o w s  a n  e x a m p l e  o f  s u c h  a s p l i n e  a l o n g  w i t h  i t s  
c o n t r o l  p o l y g o n ,  F i g u r e  8c s h o w s  e v a l u a t i o n  o f  t h e  s p l i n e  a t  
t = .4, a n d  F i g u r e  8d s h o w s  a b l e n d i n g  f u n c t i o n  G/(t) .  T h i s  
s p l i n e  is C ° a n d  i n t e r p o l a t o r y .  

4 C o n c l u d i n g  r e m a r k s  
In this paper  we have shown that  a special class of Catmull-  

Rom splines possess a recursive evaluation algorithm similar to the 
de Boor algorithm for B-splines. This algorithm for Catm~U-Rom 
splines is obtained by combining the deBoor algorithm for the eval- 
uation of B-splines with Neville's algorithm for the evaluation of L ~  
grange curves. The recursive evaluation algorithm for Catmull-Rom 
splines gives us a possible means of fast evaluation. It also allows the 
construction of new curve schemes which retain some properties of 
Catmull-Rom curves and which may have useful shape parameters.  
Another benefit is tha t  [t facilitates derivation of some transforma- 
tion techniques. Further it makes Catmull-Rom splines noteworthy 
since very few known piecewise polynomial schemes have a simple 
evaluation algorithm. 

Although we have derived one new property of Catmnl l -Rom 
splines, other properties still need to be investigated. For exam- 
ple, what  shape preservation properties do Catmull-Rom splines pos- 
sess? What  geometric effects can be produced by the introduction 
of shape parameters? And finally, are there simple algorithms for 
such processes as subdivision, degree elevation, or differentiation of 
Catmul l -Rom splines? 
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